Arrangements of Approaching Pseudo-Lines

Author:

Felsner Stefan,Pilz Alexander,Schnider PatrickORCID

Abstract

AbstractWe consider arrangements ofnpseudo-lines in the Euclidean plane where each pseudo-line$$\ell _i$$iis represented by a bi-infinite connectedx-monotone curve$$f_i(x)$$fi(x),$$x \in \mathbb {R}$$xR, such that for any two pseudo-lines$$\ell _i$$iand$$\ell _j$$jwith$$i \!<\! j$$i<j, the function$$x \!\mapsto \! f_j(x) \!-\! f_i(x)$$xfj(x)-fi(x)is monotonically decreasing and surjective (i.e., the pseudo-lines approach each other until they cross, and then move away from each other). We show that sucharrangements of approaching pseudo-lines, under some aspects, behave similar to arrangements of lines, while for other aspects, they share the freedom of general pseudo-line arrangements. For the former, we prove:There are arrangements of pseudo-lines that are not realizable with approaching pseudo-lines.Every arrangement of approaching pseudo-lines has a dual generalized configuration of points with an underlying arrangement of approaching pseudo-lines.For the latter, we show:There are$$2^{\Theta (n^2)}$$2Θ(n2)isomorphism classes of arrangements of approaching pseudo-lines (while there are only$$2^{\Theta (n \log n)}$$2Θ(nlogn)isomorphism classes of line arrangements).It can be decided in polynomial time whether an allowable sequence is realizable by an arrangement of approaching pseudo-lines.Furthermore, arrangements of approaching pseudo-lines can be transformed into each other by flipping triangular cells, i.e., they have a connected flip graph, and every bichromatic arrangement of this type contains a bichromatic triangular cell.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3