Abstract
AbstractFor a finite set $$S\subset {\mathbb {R}}^2$$
S
⊂
R
2
, a map $$\varphi :S\rightarrow {\mathbb {R}}^2$$
φ
:
S
→
R
2
is orientation preserving if for every non-collinear triple $$u,v,w\in S$$
u
,
v
,
w
∈
S
the orientation of the triangle u, v, w is the same as that of the triangle $$\varphi (u),\varphi (v),\varphi (w)$$
φ
(
u
)
,
φ
(
v
)
,
φ
(
w
)
. Assuming that $$\varphi :G_n\rightarrow {\mathbb {R}}^2$$
φ
:
G
n
→
R
2
is an orientation preserving map where $$G_n$$
G
n
is the grid $$\{0,\pm 1,\dots ,\pm n\}^2$$
{
0
,
±
1
,
⋯
,
±
n
}
2
and n is large enough we prove that there is a projective transformation $$\mu :{\mathbb {R}}^2\rightarrow {\mathbb {R}}^2$$
μ
:
R
2
→
R
2
such that $$\Vert \mu \circ \varphi (z)-z\Vert =O(1/n)$$
‖
μ
∘
φ
(
z
)
-
z
‖
=
O
(
1
/
n
)
for every $$z\in G_n$$
z
∈
G
n
.
Funder
Nemzeti Fejlesztési Ügynökség
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference8 articles.
1. Bárány, I., Pór, A., Valtr, P.: Orientation preserving maps of the square grid. J. Comput. Geom. 13(2), 73–89 (2022)
2. Goaoc, X., Welzl, E.: Convex hulls of random order types. J. ACM 70(1), # 8 (2023)
3. Goodman, J.E., Pollack, R.: The complexity of point configurations. Discrete Appl. Math. 31(2), 167–180 (1991)
4. Goodman, J.E., Pollack, R., Sturmfels, B.: The intrinsic spread of a configuration in $${ R}^d$$. J. AMS 3(3), 639–651 (1990)
5. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory Ser. B 62(2), 289–315 (1994)