Cubic Sublattices

Author:

Horváth Márton

Abstract

AbstractA sublattice of the three-dimensional integer lattice $${\mathbb {Z}}^3$$ Z 3 is called cubic sublattice if there exists a basis of the sublattice whose elements are pairwise orthogonal and of equal lengths. We show that for an integer vector $${\textbf{v}}\in {\mathbb {Z}}^3$$ v Z 3 whose squared length is divisible by $$d^2$$ d 2 , there exists a cubic sublattice containing $${\textbf{v}}$$ v with edge length d. This improves one of the main result of a paper of Goswick et al. (J. Number Theory 132(1), 37–53 (2012)), where similar theorem was proved by using the decomposition theory of Hurwitz integral quaternions. We give an elementary proof heavily using cross product. This method allows us to characterize the cubic sublattices.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference9 articles.

1. Carmichael, R.D.: Diophantine Analysis. Wiley, New York (1915)

2. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics. Springer, Berlin (1997)

3. Goswick, L.M., Kiss, E.W., Moussong, G., Simányi, N.: Sums of squares and orthogonal integral vectors. J. Number Theory 132(1), 37–53 (2012)

4. Ionascu, E.J.: Ehrhart polynomial for lattice squares, cubes and hypercubes. Rev. Roumaine Math. Pures Appl. 64(1), 57–80 (2019)

5. Jacobson, N.: Basic Algebra. I. W.H. Freeman, New York (1985)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3