Worst-Case Optimal Covering of Rectangles by Disks
-
Published:2023-10-06
Issue:
Volume:
Page:
-
ISSN:0179-5376
-
Container-title:Discrete & Computational Geometry
-
language:en
-
Short-container-title:Discrete Comput Geom
Author:
Fekete Sándor P.ORCID, Gupta Utkarsh, Keldenich Phillip, Shah Sahil, Scheffer Christian
Abstract
AbstractWe provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\lambda \ge 1$$
λ
≥
1
, the critical covering area $$A^*(\lambda )$$
A
∗
(
λ
)
is the minimum value for which any set of disks with total area at least $$A^*(\lambda )$$
A
∗
(
λ
)
can cover a rectangle of dimensions $$\lambda \times 1$$
λ
×
1
. We show that there is a threshold value $$\lambda _2 = \sqrt{\sqrt{7}/2 - 1/4} \approx 1.035797\ldots $$
λ
2
=
7
/
2
-
1
/
4
≈
1.035797
…
, such that for $$\lambda <\lambda _2$$
λ
<
λ
2
the critical covering area $$A^*(\lambda )$$
A
∗
(
λ
)
is $$A^*(\lambda )=3\pi \left( \frac{\lambda ^2}{16} +\frac{5}{32} + \frac{9}{256\lambda ^2}\right) $$
A
∗
(
λ
)
=
3
π
λ
2
16
+
5
32
+
9
256
λ
2
, and for $$\lambda \ge \lambda _2$$
λ
≥
λ
2
, the critical area is $$A^*(\lambda )=\pi (\lambda ^2+2)/4$$
A
∗
(
λ
)
=
π
(
λ
2
+
2
)
/
4
; these values are tight. For the special case $$\lambda =1$$
λ
=
1
, i.e., for covering a unit square, the critical covering area is $$\frac{195\pi }{256}\approx 2.39301\ldots $$
195
π
256
≈
2.39301
…
. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.
Funder
Technische Universität Braunschweig
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference46 articles.
1. Abu-Affash, A.K., Carmi, P., Katz, M.J., Morgenstern, G.: Multi cover of a polygon minimizing the sum of areas. Int. J. Comput. Geom. Appl. 21(06), 685–698 (2011) 2. Agnetis, A., Grande, E., Mirchandani, P.B., Pacifici, A.: Covering a line segment with variable radius discs. Comput. Oper. Res. 36(5), 1423–1436 (2009) 3. Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Proceedings of 22nd Annual Symposium on Computational Geometry, pp. 449–458 (2006) 4. Bánhelyi, B., Palatinus, E., Lévai, B.L.: Optimal circle covering problems and their applications. Cent. Eur. J. Oper. Res. 23(4), 815–832 (2015) 5. Becker, A.T., Fekete, S.P., Keldenich, P., Morr, S., Scheffer, C.: Packing geometric objects with optimal worst-case density (multimedia exposition). In: Proceedings 35th International Symposium on Computational Geometry (SoCG), pp. 63:1–63:6 (2019). https://www.ibr.cs.tu-bs.de/users/fekete/Videos/PackingCirclesInSquares.mp4
|
|