Abstract
AbstractWe quantise Whitney’s construction to prove the existence of a triangulation for any $$C^2$$
C
2
manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
Funder
European reseach council
European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference52 articles.
1. Aamari, E., Kim, J., Chazal, F., Michel, B., Rinaldo, A., Wasserman, L.: Estimating the reach of a manifold. Electron. J. Stat. 13(1), 1359–1399 (2019)
2. Aamari, E., Levrard, C.: Nonasymptotic rates for manifold, tangent space and curvature estimation. Ann. Stat. 47(1), 177–204 (2019)
3. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington (1970)
4. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)
5. Allgower, E.L., Schmidt, P.H.: An algorithm for piecewise-linear approximation of an implicitly defined manifold. SIAM J. Numer. Anal. 22(2), 322–346 (1985)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献