1. Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz, A., Ramos, P., Sala-zar, G., Vogtenhuber, B.: All good drawings of small complete graphs. In: 31th European Workshop on Computational Geometry (Ljubljana 2015). Book of Abstracts, pp. 57–60. http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
2. Aichholzer, O., Balko, M., Hoffmann, M., Kynčl, J., Mulzer, W., Parada, I., Pilz, A., Scheucher, M., Valtr, P., Vogtenhuber, B., Welzl, E.: Minimal representations of order types by geometric graphs. In: Graph Drawing and Network Visualization (Prague 2019). Lecture Notes in Computer Science, vol. 11904, pp. 101–113. Springer, Cham (2019). Full version: arXiv:1908.05124
3. Aichholzer, O., Hackl, T., Pilz, A., Ramos, P., Sacristán, V., Vogtenhuber, B.: Empty triangles in good drawings of the complete graph. In: Mexican Conference on Discrete Mathematics and Computational Geometry (Oaxaca 2013), pp. 21–29 (2013)
4. Aichholzer, O., Hackl, T., Pilz, A., Salazar, G., Vogtenhuber, B.: Deciding monotonicity of good drawings of the complete graph. In: 16th Spanish Meeting on Computational Geometry (Barcelona 2015), pp. 33–36 (2015)
5. Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Drawings of $$K_n$$ with the same rotation scheme are the same up to triangle-flips (Gioan’s theorem). Australas. J. Combin. 67, 131–144 (2017)