Curvature Sets Over Persistence Diagrams

Author:

Gómez Mario,Mémoli FacundoORCID

Abstract

AbstractWe study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers $$k\ge 0$$ k 0 and $$n\ge 1$$ n 1 we consider the dimension k Vietoris–Rips persistence diagrams of all subsets of a given metric space with cardinality at most n. We call these invariants persistence sets and denote them as $${\textbf{D}}_{n,k}^{\textrm{VR}}$$ D n , k VR . We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parameters n and k, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which $${\textbf{D}}_{4,1}^{\textrm{VR}}$$ D 4 , 1 VR fully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a space X with cardinality $$2k+2$$ 2 k + 2 with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.

Funder

National Science Foundation

United States - Israel Binational Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3