Author:
Stróżyk Michał A.,Muddasar Muhammad,Conroy Timothy J.,Hermansson Frida,Janssen Matty,Svanström Magdalena,Frank Erik,Culebras Mario,Collins Maurice N.
Abstract
AbstractThe use of carbon fibre (CF)-based composites is of growing global importance due to their application in high-end sectors such as aerospace, automotive, construction, sports and leisure amongst others. However, their current high production cost, high carbon footprint and reduced production capability limit their use to high-performance and luxury applications. Approximately 50% of the total cost of CF production is due to the thermal conversion of polyacrylonitrile (PAN) precursor fibre (PF) to CF as it involves the use of high energy consumption and low heating efficiency in large furnaces. Looking at this scenario, this study proposes in the present study to use microwave (MW) heating to convert PF to CF. This is scientifically and technologically challenging since PF does not absorb microwave energy. While MW plasma has been utilised to carbonise fibres, it is the high temperature from the plasma that does the carbonisation and not the MW absorption of the fibres. Therefore, for the first time, this research shows how carbonisation temperatures of >1000 °C can be reached in a matter of seconds through the use of a novel microwave (MW) susceptor nanocoating methodology developed via a layer-by-layer assembly of multiwall carbon nanotubes (MWCNTs) on the PF surface. Remarkably, these CFs can be produced in an inexpensive domestic microwave and exhibit mechanical performance equivalent to CF produced using conventional heating. Additionally, this study provides a life cycle and environmental impact analysis which shows that MW heating reduces the energy demand and environmental impact of lignin-based CF production by up to 66.8% and 69.5%, respectively.
Graphical Abstract
Funder
Horizon 2020 Framework Programme
Department of Agriculture, Food and the Marine, Ireland
HORIZON EUROPE Framework Programme
University of Limerick
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献