Author:
Nazir M. Tariq,Khalid Arslan,Wang Cheng,Kabir Imrana,Yeoh Guan H.,Phung B. Toan
Abstract
AbstractSilicone rubber (SR) is a leading polymer used in electrical outdoor insulation applications due to its superior hydrophobic characteristics. However, the low flame and electrical surface discharge resistance of SR limit its broad viability and challenge its integrity in severe outdoor working conditions. This work attempts to explore the flame retardancy and surface discharge characteristics of SR co-filled with aluminium hydroxide (ATH), nanoclay montmorillonite (MMT), and chopped glass fibre (GF). Results indicate that the incorporation of ATH/MMT/GF could assist in improving the fire and surface discharge resistance of the SR material. It is noted that the maximum average rate of heat emission (MARHE) and total smoke production (TSP) are measured at 24.93 kW/m2 and 0.48 m2 in SRE, relative to 61.29 kW/m2 and 6.02 m2 in SRB. Using finite element analysis (FEA), the maximum electric field strength is computed at 4.66 × 106 V/m in the air gap coupled with a high-voltage (HV) plate and sample. SRE exhibits a higher partial discharge inception voltage (PDIV) value of 2.32 kVrms than its counterparts, while the maximum discharge magnitude (Qmax) is computed at 7095 pC, relative to 7746 pC in SRB. SRE emerges as a preferable SR composite to be used in electrical insulation applications with excellent flame and surface discharge resistance characteristics.
Funder
Royal Melbourne Institute of Technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Partial Discharge Signal Analysis Method for Transmission Cables Supported by Deep Learning;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24