3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation

Author:

Dong Shiling,Maciejewska Barbara,Millar Robert,Grobert Nicole

Abstract

AbstractCeramic aerogels are excellent ultralight-weight thermal insulators yet impractical due to their tendency towards structural degradation at elevated temperatures, under mechanical disturbances, or in humid environments. Here, we present flexible and durable alumina/zirconia fibrous aerogels (AZFA) fabricated using 3D sol–gel electrospinning — a technique enabling in situ formation of 3D fiber assemblies with significantly reduced time consumption and low processing cost compared to most existing methods. Our AZFAs exhibit ultralow density (> 3.4 mg cm−3), low thermal conductivity (> 21.6 mW m−1 K−1), excellent fire resistance, while remaining mechanically elastic and flexible at 1300 °C, and thermally stable at 1500 °C. We investigate the underlying structure-thermal conductivity relationships, demonstrating that the macroscopic fiber arrangement dictates the solid-phase thermal conduction, and the mesopores in the fiber effectively trap air thereby decreasing the gas conduction. We show experimentally and theoretically that directional heat transport, i.e., anisotropic thermal conductivity, can be achieved through compressing the fiber network. We further solve the moisture sensitivity problem of common fibrous aerogels through fluorination coating. The resulting material possesses excellent hydrophobicity and self-cleaning properties, which can provide reliable thermal insulation under various conditions, including but not limited to high-temperature conditions in vehicles and aircraft, humid conditions in buildings, and underwater environments for oil pipelines. Graphical Abstract

Funder

EPSRC

Faraday Institution

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3