3D printable electroconductive gelatin-hyaluronic acid materials containing polypyrrole nanoparticles for electroactive tissue engineering

Author:

Serafin Aleksandra,Culebras Mario,Oliveira J. Miguel,Koffler Jacob,Collins Maurice N.

Abstract

AbstractElectrically conductive bio-scaffolds are explored in the field of tissue engineering (TE) as a solution to address the clinical need of electroactive tissues, finding applications in nervous, cardiac, and spinal cord injury repair. In this work, we synthesise polypyrrole nanoparticles (PPy NP) via the mini-emulsion method with further combination with a gelatin/hyaluronic acid (HA) hydrogel to create electroconductive Gel:HA:PPy-NP TE scaffolds. Electroconductive Gel:HA:PPy-NP scaffolds possess excellent mechanical properties at 1.08 ± 0.26 MPa, closely matching the reported mechanical performance of the spinal cord. Scaffolds were designed with controlled porosity of 526.2 ± 74.6–403.9 ± 57.4 µm, and conductivities of 4.3 × 10–6 ± 1.1 × 10–6 S.cm−1 were reached. Rheological studies show that prior to lyophilisation, the Gel:HA:PPy-NP hydrogels display a shear-thinning behaviour. These gels were subsequently 3D printed into predefined 2 layer lattice geometries and displayed excellent post-printing shape fidelity. In vitro studies show that the Gel:HA:PPy-NP scaffolds are cytocompatible with mesenchymal stem cells and neuronal stem cells and display encouraging cell attachment and proliferation profiles. Based on these results, the incorporation of PPy NPs into Gel:HA biomaterial scaffolds enhances the conductive capabilities of the material, while showcasing biocompatible behaviour with cell cultures. Hence, Gel:HA:PPy-NP scaffolds are a promising TE option for stimulating regeneration following nervous tissue injury.

Funder

irish reserach council

University of Limerick

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3