Abstract
AbstractThe scope of work included the fabrication of ceramic-metal composites from the Al2O3-Cu and Al2O3-Cu-Mo and examining their microstructure and selected properties. The composites were fabricated by the slip casting method. The rheological behavior, microstructures, X-ray analysis, and mechanical properties were investigated. The rheological study demonstrated that all of the obtained slurries were non-Newtonian shear diluted fluids and stability on time. In both slurries, the flow limit is close to 0 Pa, which is very beneficial when casting the suspensions into molds. The X-ray analysis reveals Al2O3, Cu, and Mo phases in all specimens. No new phases were found in both types of composites after the sintering process. The results provided that the hardness for Al2O3-Cu-Mo composites was equal to 10.06 ± 0.49 GPa, while for Al2O3-Cu, it was equal to 6.81 ± 2.08 GPa. The K1C values measured, with the use of Niihara equation, for composites with and without the addition of Mo were equal to 6.13 ± 0.62 MPa m0.5 and 6.04 ± 0.55 MPa m0.5, respectively. It has been established that the mean specific wear rates of Al2O3-Cu and Al2O3-Cu-Mo samples were 0.35 × 10–5 ± 0.02 mm3 N−1 m−1 and 0.22 × 10–5 ± 0.04 mm3 N−1 m−1, respectively. It was found that molybdenum addition improved wear resistance properties of the composites.
Funder
Fundacja na rzecz Nauki Polskiej
Narodowym Centrum Nauki
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Polymers and Plastics,Materials Science (miscellaneous),Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献