Chitosan decorated cobalt zinc ferrite nanoferrofluid composites for potential cancer hyperthermia therapy: anti-cancer activity, genotoxicity, and immunotoxicity evaluation

Author:

Sharifi Esmaeel,Reisi Fatemeh,Yousefiasl Satar,Elahian Fatemeh,Barjui Shahrbanou Parchami,Sartorius Rossella,Fattahi Najmeh,Zare Ehsan Nazarzadeh,Rabiee Navid,Gazi Elham Pahlevani,Paiva-Santos Ana Cláudia,Parlanti Paola,Gemmi Mauro,Mobini Gholam-Reza,Hashemzadeh-Chaleshtori Morteza,De Berardinis Piergiuseppe,Sharifi Ibrahim,Mattoli Virgilio,Makvandi Pooyan

Abstract

AbstractCancer, as the leading cause of death worldwide, has been constantly increasing in mortality every year. Among several therapeutics, nanoscale compounds showed promising results in overcoming cancer diseases. There are numerous types of research on the paramagnetic nanoparticles of iron oxide, which cause apoptosis and cancer cell death. In this study, cobalt/zinc/ferrite nanoferrofluid composites (~ 39 nm) were synthesized and decorated with chitosan to enhance the cell entry for potential applications in cancer therapy. The neat and chitosan-adorned cobalt zinc ferrite nanoferrofluid composites (~ 94 nm) displayed superparamagnetic properties. The nanocomposite exhibited anti-cancer activity against WEHI164 cancer cells in a dose- and time-dependent manner. The chitosan-coated nanocomposite was found to induce oxidative stress in WEHI164 cancer cells, as indicated by reactive oxygen species (ROS) production. Furthermore, DNA damage was indicated in WEHI164 cancer cells after exposure to chitosan-coated nanocomposites. Chitosan-coated nanocomposites promoted dendritic cell maturation by inducing the release of interleukin-6 proinflammatory cytokines. According to the results and ancillary studies, superparamagnetic nanoparticles coated with chitosan can be considered an effective and promising treatment for the destruction of cancer cells. Graphical Abstract Summary: Chitosan decorated cobalt zinc ferrite nanoferrofluid composites was fabricated for potential cancer hyperthermia therapy with high biocompatibility.

Funder

Istituto Italiano di Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Polymers and Plastics,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3