Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices

Author:

Scaffaro Roberto,Maio Andrea,Gammino Michele

Abstract

AbstractGraphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS cm−1 mg−1) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning.

Funder

European Commission

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3