Genome-wide identification of Fagus sylvatica aquaporins and their comparative spring and summer expression profiles

Author:

Israel DavidORCID,Durand MaximeORCID,Salmon YannORCID,Zwiazek Janusz JerzyORCID,Robson Thomas MatthewORCID

Abstract

Abstract Key message A total of 45 aquaporins was identified in Fagus sylvatica, 35 of which were differentially expressed in spring and summer in the leaves, phloem and xylem of 11-year-old trees. Abstract European beech (Fagus sylvatica) has been widely studied in terms of its water relations and local adaptation. However, to date, the underlying basis conferring adaptation to differences in water availability are unknown. Therefore, we examined the expression of aquaporins in trees of four different beech provenances representing the southern and northern range margins, as well as core populations, grown in a common garden. We sampled their xylem, phloem and leaf tissue, when leaves had fully expanded, and in late summer. A total of 45 aquaporin isoforms were identified in the beech genome, of which 35 were detected across all sampled tissues. In our phylogenetic analysis, beech aquaporins clustered into the five subfamilies found in other woody species. Members of the plasma membrane intrinsic protein subfamily generally displayed the highest levels of expression, followed by tonoplast intrinsic proteins. Isoforms of the remaining subfamilies, Noduline-26-like intrinsic proteins, small basic intrinsic proteins and uncharacterised intrinsic proteins, were expressed at very low to moderate levels. The expression of most isoforms was stable or declined from spring to summer. Leaves followed a different expression profile from that of vascular tissues, whereas both phloem and xylem were found to express the same FsMIPs. Tissue-specific aquaporin expression was very similar amongst the four beech provenances, indicating that there is no inherent difference in the capability of these provenances to regulate aquaporin activity. The general decrease in FsMIP expression toward the end of the growing period indicates that aquaporins are involved in tree water relations and growth.

Funder

Academy of Finland

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3