Growth and drought reaction of European hornbeam, European white elm, field maple and wild service tree

Author:

Schmucker JuliaORCID,Uhl EnnoORCID,Schmied GerhardORCID,Pretzsch HansORCID

Abstract

Abstract Key message Considering their drought tolerance and growth characteristics, rare native tree species are well-suited admixed species for the development of climate-stable forests in Central Europe. Abstract In our study, we assessed the growth and drought reaction of the four rare native tree species European hornbeam (Carpinus betulus L.), European white elm (Ulmus laevis Pall.), field maple (Acer campestre L.), and wild service tree (Sorbus torminalis (L.) Crantz). Based on tree-ring data, we (I) evaluated their species-specific growth characteristics and variability and examined the influencing site and tree characteristics on annual growth. (II) We quantified their reaction to single drought events, also depending on site and tree variables. (III) We compared our results to oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) and European beech (Fagus sylvatica L.). As they are well-known Central European tree species, there is a broad knowledge about their growth and drought response across wide geographical ranges available. Bringing the results of European beech and oak in relation with the rare native species, it allows to categorise their growth and drought reaction and to contextualise their performance. Our results show, that besides European white elm, the rare species showed an overall lower annual growth with a higher variability than European beech and oak. However, especially field maple and wild service tree were better adapted to drought than European beech and partially even recovered better than oak. Combining the aspects of growth stability and drought tolerance, we conclude that rare native tree species are well suited as admixed species in future forest stands. European hornbeam is a suitable match for European beech on wetter sites, while field maple and wild service tree are a sensible complement for the climate stable oak on drier sites.

Funder

Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten

H2020 Marie Skłodowska-Curie Actions

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3