Abstract
Abstract
Key Message
The patterns of induced chemical defences in Quercus ilex leaves are specific to the biotic stress factor that causes them. Interactive effects between stressors depend on provenance.
Abstract
Quercus forests are suffering serious decline worldwide, closely linked to the consequences of climate change. The increase of biotic stressors threatens the survival of the holm oak (Quercus ilex), a dominant tree species in the Mediterranean Basin. A better understanding of its resistance mechanisms is urgently required to enable a better control of its decline. In this work, the ability of holm oaks from six Iberian provenances to respond to multiple biotic damage is studied through an analysis of their induced chemical defence patterns. Using 2016 seedlings established in a common garden trial (6 regions × 12 families/region × 7 seedlings/family × 4 treatments), biotic damage was induced at the root level (by infection with the widespread pathogen Phytophthora cinnamomi) and at the above-ground level (by mechanical defoliation). The levels of constitutive and induced total phenols, total tannins and condensed tannins were measured. Results showed that (1) the defensive chemical patterns present significant local and geographical variation, (2) survival to stress is more related to constitutive defences than induced ones, (3) the induced response is stressor-specific, and (4) there is an interactive effect amongst stressors whose sign (induction/inhibition) depends on the provenance. These findings on biotic stressor effects on the chemical defences and survival of holm oak can contribute to the development of genetic material selection programs in the integrated control of the widespread decline of Quercus.
Funder
INIA
Ministerio de Agricultura, Alimentación y Medio Ambiente
Universidad de Extremadura
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Ecology,Physiology,Forestry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献