The influence of environmental condition on the creation of organic compounds in Pinus sylvestris L. rhizosphere, roots and needles

Author:

Magdziak ZuzannaORCID,Gąsecka Monika,Waliszewska Bogusława,Zborowska Magdalena,Mocek Andrzej,Cichy Wojciech J.,Mazela Bartłomiej,Kozubik Tomisław,Mocek-Płóciniak Agnieszka,Niedzielski Przemysław,Goliński Piotr,Mleczek Mirosław

Abstract

Abstract Key message Studied organic molecules in Pinus sylvestris L. seem to have acted as a safety net for metal transport, chelation and sequestration, allowing adaptation and growth under highly polluted conditions. Abstract Pinus sylvestris L. is known for its ability to survive in areas of highly elevated metal pollution, such as flotation tailings. The aim of the study was to estimate the content of selected organic molecules (including aliphatic low molecular weight organic acids (ALMWOAs), phenolic compounds and terpenes) and the physiological mechanisms underlying differences in metal/metalloid tolerance of P. sylvestris growing in unpolluted (soil) and polluted (flotation tailings) areas. The dominant ALMWOAs in rhizosphere soil extracts were citric acid followed by malic and oxalic acids, whereas in flotation tailings malic and oxalic acids. In roots and needles, the content of ALMOWAs was significantly higher in P. sylvestris L. tissue from flotation tailings in comparison to soil. Phenolic compounds were detected only in roots and needles, with a generally higher content of nearly all detected compounds from flotation tailings. The composition of roots did not contain all the compounds detected in needles. The profile of needles additionally contained four hydroxybenzoic, protocatechuic and salicylic acids. In pine needles, 24 volatile terpenes were identified in total. The content of these compounds in pine needles from the polluted area was markedly different from the unpolluted area. The dominant volatile monoterpenes in P. sylvestris L. needles from the unpolluted area was three carene, while in pine needles from the polluted area monoterpenes α-pinene was dominant.

Funder

Narodowe Centrum Nauki

Poznan University of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3