Importance of stem photosynthesis in plant carbon allocation of Clusia minor

Author:

Kocurek MaciejORCID,Kornas AndrzejORCID,Wierzchnicki RyszardORCID,Lüttge Ulrich,Miszalski ZbigniewORCID

Abstract

Abstract Key message Restricted access of light for stems reduced carbon acquisition there and limited the biomass growth of the roots. Abstract Light access can affect the microatmosphere within stems, creating favourable conditions for photosynthesis. We tested the hypothesis that stem photosynthesis modifies carbon allocation within plants and also can affect root growth. To verify this hypothesis, parts of Clusia minor L. stems were covered with dark material for 8 months to block light access to stems, and then, we compared morphological traits, biomass increment, photosynthetic activity and carbon isotopic signature (δ13C) in plants with dark- and light-exposed stems. Clusia minor stems were characterized by chlorophyll presence from pith to cortex, active photosystem II and 79% re-assimilation of respired CO2. We also revealed 24-h changes in the δ13C of carbohydrates exported from leaves. Keeping stems in darkness led to a significant lowering in root biomass and shoot-to-root weight index (Iw). Moreover, reductions in stem CO2 efflux and the δ13C in the roots and stems were also observed. Our results indicate that the lack of stem photosynthesis affects photosynthate flux to heterotrophic organs, such as roots, stems and probably expanding leaves.

Funder

Alexander von Humboldt-Stiftung

Ministry of Science and Higher Education of the Republic of Poland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3