Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves

Author:

Mattila HetaORCID,Sotoudehnia PoonehORCID,Kuuslampi TelmaORCID,Stracke Ralf,Mishra Kumud B.,Tyystjärvi EsaORCID

Abstract

Abstract Key message Decreased absorptance and increased singlet oxygen production may cause photoinhibition of both PSII and PSI in birch leaves during autumn senescence; however, photosynthetic electron transfer stays functional until late senescence. Abstract During autumn senescence, deciduous trees degrade chlorophyll and may synthesize flavonols. We measured photosynthetic parameters, epidermal flavonols, singlet oxygen production in vivo and photoinhibition of the photosystems (PSII and PSI) from green and senescing silver birch (Betula pendula) leaves. Chlorophyll a fluorescence and P700 absorbance measurements showed that the amounts of both photosystems decreased throughout autumn senescence, but the remaining PSII units stayed functional until ~ 90% of leaf chlorophyll was degraded. An increase in the chlorophyll a to b ratio, a decrease in > 700 nm absorbance and a blue shift of the PSI fluorescence peak at 77 K suggest that light-harvesting complex I was first degraded during senescence, followed by light-harvesting complex II and finally the photosystems. Senescing leaves produced more singlet oxygen than green leaves, possibly because low light absorption by senescing leaves allows high flux of incident light per photosystem. Senescing leaves also induced less non-photochemical quenching, which may contribute to increased singlet oxygen production. Faster photoinhibition of both photosystems in senescing than in green leaves, under high light, was most probably caused by low absorption of light and rapid singlet oxygen production. However, senescing leaves maintained the capacity to recover from photoinhibition of PSII. Amounts of epidermal flavonols and singlet oxygen correlated neither in green nor in senescing leaves of silver birch. Moreover, Arabidopsis thaliana mutants, incapable of synthesizing flavonols, were not more susceptible to photoinhibition of PSII or PSI than wild type plants; screening of chlorophyll absorption by flavonols was, however, small in A. thaliana. These results suggest that flavonols do not protect against photoinhibition or singlet oxygen production in chloroplasts.

Funder

Academy of Finland

Vilho, Yrjö and Kalle Väisälä Foundation

Doctoral Programme of Molecular Life Sciences Univ Turku

SustES-Adaptation Strategies for sustainable ecosystem services and food security under adverse environmental conditions

Emil Aaltosen Säätiö

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3