Abstract
Abstract
Key message
Fine root and litterfall are major contributor of NPP and fine root production may reflect forest productivity in a warm-temperate forest in Japan.
Abstract
Forest ecosystems play an important role as the major carbon sink on land, with fine root dynamics and litterfall representing major carbon fluxes. The objectives of this research were to estimate NPP including annual fine root production values, to investigate fine root dynamics and the relationships between above– and belowground organs in konara oak (Quercus serrata) and hinoki cypress (Chamaecyparis obtusa) forests. Litterfall was collected seasonally for 1 year from June 2013. The ingrowth core method and the sequential soil core method were applied with a root litterbag experiment to estimate fine root (< 2 mm) production (FRP), mortality (FRM), and decomposition (FRD) for 1 year (from 2013 to 2014), using the continuous inflow estimate method and the simplified decision matrix. The total NPP ranged from 8.2 to 13.9 (t ha− 1 yr− 1), and the sum of aboveground litterfall and FRP accounted for 60% of the total NPP on average, confirming the significance of above- and belowground litter for the forest NPP as a source of detritus for the decomposer system. In hinoki cypress stand, fine root biomass peaked in the end of winter while fine root necromass showed the highest peak in late summer. In konara oak stand, only very fine root (< 0.05 mm) biomass and necromass demonstrated significant seasonal patterns. The seasonal patterns of fine root production did not differ between forest types and root diameter classes. We found a possible relationship between above- and belowground production and fine root production tended to be high in productive forests. This study improves our understanding of different patterns of carbon dynamics between temperate broadleaved and coniferous forest ecosystems.
Funder
Sasakawa Scientific Research Grant
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Ecology,Physiology,Forestry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献