Evaluation of LLM Tools for Feedback Generation in a Course on Concurrent Programming

Author:

Estévez-Ayres IriaORCID,Callejo PatriciaORCID,Hombrados-Herrera Miguel ÁngelORCID,Alario-Hoyos CarlosORCID,Delgado Kloos CarlosORCID

Abstract

AbstractThe emergence of Large Language Models (LLMs) has marked a significant change in education. The appearance of these LLMs and their associated chatbots has yielded several advantages for both students and educators, including their use as teaching assistants for content creation or summarisation. This paper aims to evaluate the capacity of LLMs chatbots to provide feedback on student exercises in a university programming course. The complexity of the programming topic in this study (concurrency) makes the need for feedback to students even more important. The authors conducted an assessment of exercises submitted by students. Then, ChatGPT (from OpenAI) and Bard (from Google) were employed to evaluate each exercise, looking for typical concurrency errors, such as starvation, deadlocks, or race conditions. Compared to the ground-truth evaluations performed by expert teachers, it is possible to conclude that none of these two tools can accurately assess the exercises despite the generally positive reception of LLMs within the educational sector. All attempts result in an accuracy rate of 50%, meaning that both tools have limitations in their ability to evaluate these particular exercises effectively, specifically finding typical concurrency errors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3