Utilizing a Pretrained Language Model (BERT) to Classify Preservice Physics Teachers’ Written Reflections

Author:

Wulff PeterORCID,Mientus Lukas,Nowak Anna,Borowski AndreasORCID

Abstract

AbstractComputer-based analysis of preservice teachers’ written reflections could enable educational scholars to design personalized and scalable intervention measures to support reflective writing. Algorithms and technologies in the domain of research related to artificial intelligence have been found to be useful in many tasks related to reflective writing analytics such as classification of text segments. However, mostly shallow learning algorithms have been employed so far. This study explores to what extent deep learning approaches can improve classification performance for segments of written reflections. To do so, a pretrained language model (BERT) was utilized to classify segments of preservice physics teachers’ written reflections according to elements in a reflection-supporting model. Since BERT has been found to advance performance in many tasks, it was hypothesized to enhance classification performance for written reflections as well. We also compared the performance of BERT with other deep learning architectures and examined conditions for best performance. We found that BERT outperformed the other deep learning architectures and previously reported performances with shallow learning algorithms for classification of segments of reflective writing. BERT starts to outperform the other models when trained on about 20 to 30% of the training data. Furthermore, attribution analyses for inputs yielded insights into important features for BERT’s classification decisions. Our study indicates that pretrained language models such as BERT can boost performance for language-related tasks in educational contexts such as classification.

Funder

Bundesministerium für Bildung und Forschung

Pädagogische Hochschule Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Reference86 articles.

1. Abels, S. (2011). LehrerInnen als ‘Reflective Practitioner’: Reflexionskompetenz für einen demokratieförderlichen Naturwissenschaftsunterricht, (1. Aufl. ed.). Wiesbaden: VS Verl. für Sozialwiss.

2. Aeppli, J., & Lötscher, HL (2016). EDAMA - Ein Rahmenmodell für Reflexion. Beiträge zur Lehrerinnen- und Lehrerbildung, 34(1), 78–97.

3. Aleven, V., McLaughlin, E.A., Glenn, R.A., & Koedinger, K.R. (2016). Instruction based on adaptive learning technologies. In RE. Mayer P.A. Alexander (Eds.) Handbook of Research on Learning and Instruction, Educational Psychology Handbook (pp. 522–560). Taylor and Francis, Florence.

4. Bain, J.D., Ballantyne, R., Packer, J., & Mills, C. (1999). Using journal writing to enhance student teachers’ reflectivity during field experience placements. Teachers and Teaching, 5(1), 51–73.

5. Bain, J.D., Mills, C., Ballantyne, R., & Packer, J. (2002). Developing reflection on practice through journal writing: Impacts of variations in the focus and level of feedback. Teachers and Teaching, 8(2), 171–196.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3