Reducing Workload in Short Answer Grading Using Machine Learning

Author:

Weegar RebeckaORCID,Idestam-Almquist Peter

Abstract

AbstractMachine learning methods can be used to reduce the manual workload in exam grading, making it possible for teachers to spend more time on other tasks. However, when it comes to grading exams, fully eliminating manual work is not yet possible even with very accurate automated grading, as any grading mistakes could have significant consequences for the students. Here, the evaluation of an automated grading approach is therefore extended from measuring workload in relation to the accuracy of automated grading, to also measuring the overall workload required to correctly grade a full exam, with and without the support of machine learning. The evaluation was performed during an introductory computer science course with over 400 students. The exam consisted of 64 questions with relatively short answers and a two-step approach for automated grading was applied. First, a subset of answers to the exam questions was manually graded and next used as training data for machine learning models classifying the remaining answers. A number of different strategies for how to select which answers to include in the training data were evaluated. The time spent on different grading actions was measured along with the reduction of effort using clustering of answers and automated scoring. Compared to fully manual grading, the overall reduction of workload was substantial—between 64% and 74%—even with a complete manual review of all classifier output to ensure a fair grading.

Funder

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Reference41 articles.

1. Anderson, L. W., Bloom, B. S., & et al. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Longman.

2. Azad, S., Chen, B., Fowler, M., West, M., & Zilles, C. (2020). Strategies for deploying unreliable ai graders in high-transparency high-stakes exams. In: International Conference on Artificial Intelligence in Education. Springer, pp 16–28

3. Basu, S., Jacobs, C., & Vanderwende, L. (2013). Powergrading: a clustering approach to amplify human effort for short answer grading. Transactions of the Association for Computational Linguistics, 1, 391–402.

4. Bonthu, S. (2021). Automated short answer grading using deep learning: A survey. In: Machine Learning and Knowledge Extraction: 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August 17-20, 2021, Proceedings, Springer Nature, vol 12844, p 61

5. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3