Examining the Effect of Assessment Construct Characteristics on Machine Learning Scoring of Scientific Argumentation

Author:

Haudek Kevin C.ORCID,Zhai XiaomingORCID

Abstract

AbstractArgumentation, a key scientific practice presented in the Framework for K-12 Science Education, requires students to construct and critique arguments, but timely evaluation of arguments in large-scale classrooms is challenging. Recent work has shown the potential of automated scoring systems for open response assessments, leveraging machine learning (ML) and artificial intelligence (AI) to aid the scoring of written arguments in complex assessments. Moreover, research has amplified that the features (i.e., complexity, diversity, and structure) of assessment construct are critical to ML scoring accuracy, yet how the assessment construct may be associated with machine scoring accuracy remains unknown. This study investigated how the features associated with the assessment construct of a scientific argumentation assessment item affected machine scoring performance. Specifically, we conceptualized the construct in three dimensions: complexity, diversity, and structure. We employed human experts to code characteristics of the assessment tasks and score middle school student responses to 17 argumentation tasks aligned to three levels of a validated learning progression of scientific argumentation. We randomly selected 361 responses to use as training sets to build machine-learning scoring models for each item. The scoring models yielded a range of agreements with human consensus scores, measured by Cohen’s kappa (mean = 0.60; range 0.38 − 0.89), indicating good to almost perfect performance. We found that higher levels of Complexity and Diversity of the assessment task were associated with decreased model performance, similarly the relationship between levels of Structure and model performance showed a somewhat negative linear trend. These findings highlight the importance of considering these construct characteristics when developing ML models for scoring assessments, particularly for higher complexity items and multidimensional assessments.

Funder

Directorate for Education and Human Resources

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3