Intelligent Feedback on Hypothesis Testing

Author:

Tacoma SietskeORCID,Heeren Bastiaan,Jeuring JohanORCID,Drijvers PaulORCID

Abstract

AbstractHypothesis testing involves a complex stepwise procedure that is challenging for many students in introductory university statistics courses. In this paper we assess how feedback from an Intelligent Tutoring System can address the logic of hypothesis testing and whether such feedback contributes to first-year social sciences students’ proficiency in carrying out hypothesis tests. Feedback design combined elements of the model-tracing and constraint-based modeling paradigms, to address both the individual steps as well as the relations between steps. To evaluate the feedback, students in an experimental group (N = 163) received the designed intelligent feedback in six hypothesis-testing construction tasks, while students in a control group (N = 151) only received stepwise verification feedback in these tasks. Results showed that students receiving intelligent feedback spent more time on the tasks, solved more tasks and made fewer errors than students receiving only verification feedback. These positive results did not transfer to follow-up tasks, which might be a consequence of the isolated nature of these tasks. We conclude that the designed feedback may support students in learning to solve hypothesis-testing construction tasks independently and that it facilitates the creation of more hypothesis-testing construction tasks.

Funder

Utrecht University

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Reference26 articles.

1. Aberson, C. L., Berger, D. E., Healy, M. R., & Romero, V. L. (2003). Evaluation of an interactive tutorial for teaching hypothesis testing concepts. Teaching of Psychology, 30(1), 75–78. https://doi.org/10.1207/S15328023TOP3001_12.

2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207. https://doi.org/10.1207/s15327809jls0402_2.

3. Carver, R., Everson, M., Gabrosek, J., Horton, N., Lock, R., Mocko, M., . . . Wood, B. (2016). Guidelines for assessment and instruction in statistics education (GAISE) college report 2016. American statistical Association. http://www.amstat.org/education/gaise

4. Castro Sotos, A. E., Vanhoof, S., Van den Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98–113. https://doi.org/10.1016/j.edurev.2007.04.001.

5. Drijvers, P., Boon, P., Doorman, M., Bokhove, C., & Tacoma, S. (2013). Digital design: RME principles for designing online tasks. In C. Margolinas (Ed.), Proceedings of ICMI study 22 task Design in Mathematics Education (pp. 55–62). Clermont-Ferrand: ICMI.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational Status Monitoring and Fault Diagnosis System of Transformer Equipment;Wireless Communications and Mobile Computing;2022-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3