Intelligent Feedback on Hypothesis Testing
-
Published:2020-10-09
Issue:4
Volume:30
Page:616-636
-
ISSN:1560-4292
-
Container-title:International Journal of Artificial Intelligence in Education
-
language:en
-
Short-container-title:Int J Artif Intell Educ
Author:
Tacoma SietskeORCID, Heeren Bastiaan, Jeuring JohanORCID, Drijvers PaulORCID
Abstract
AbstractHypothesis testing involves a complex stepwise procedure that is challenging for many students in introductory university statistics courses. In this paper we assess how feedback from an Intelligent Tutoring System can address the logic of hypothesis testing and whether such feedback contributes to first-year social sciences students’ proficiency in carrying out hypothesis tests. Feedback design combined elements of the model-tracing and constraint-based modeling paradigms, to address both the individual steps as well as the relations between steps. To evaluate the feedback, students in an experimental group (N = 163) received the designed intelligent feedback in six hypothesis-testing construction tasks, while students in a control group (N = 151) only received stepwise verification feedback in these tasks. Results showed that students receiving intelligent feedback spent more time on the tasks, solved more tasks and made fewer errors than students receiving only verification feedback. These positive results did not transfer to follow-up tasks, which might be a consequence of the isolated nature of these tasks. We conclude that the designed feedback may support students in learning to solve hypothesis-testing construction tasks independently and that it facilitates the creation of more hypothesis-testing construction tasks.
Funder
Utrecht University
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Education
Reference26 articles.
1. Aberson, C. L., Berger, D. E., Healy, M. R., & Romero, V. L. (2003). Evaluation of an interactive tutorial for teaching hypothesis testing concepts. Teaching of Psychology, 30(1), 75–78. https://doi.org/10.1207/S15328023TOP3001_12. 2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207. https://doi.org/10.1207/s15327809jls0402_2. 3. Carver, R., Everson, M., Gabrosek, J., Horton, N., Lock, R., Mocko, M., . . . Wood, B. (2016). Guidelines for assessment and instruction in statistics education (GAISE) college report 2016. American statistical Association. http://www.amstat.org/education/gaise 4. Castro Sotos, A. E., Vanhoof, S., Van den Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98–113. https://doi.org/10.1016/j.edurev.2007.04.001. 5. Drijvers, P., Boon, P., Doorman, M., Bokhove, C., & Tacoma, S. (2013). Digital design: RME principles for designing online tasks. In C. Margolinas (Ed.), Proceedings of ICMI study 22 task Design in Mathematics Education (pp. 55–62). Clermont-Ferrand: ICMI.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|