Artificial intelligence and identity: the rise of the statistical individual

Author:

Bjerring Jens ChristianORCID,Busch Jacob

Abstract

AbstractAlgorithms are used across a wide range of societal sectors such as banking, administration, and healthcare to make predictions that impact on our lives. While the predictions can be incredibly accurate about our present and future behavior, there is an important question about how these algorithms in fact represent human identity. In this paper, we explore this question and argue that machine learning algorithms represent human identity in terms of what we shall call the statistical individual. This statisticalized representation of individuals, we shall argue, differs significantly from our ordinary conception of human identity, which is tightly intertwined with considerations about biological, psychological, and narrative continuity—as witnessed by our most well-established philosophical views on personal identity. Indeed, algorithmic representations of individuals give no special attention to biological, psychological, and narrative continuity and instead rely on predictive properties that significantly exceed and diverge from those that we would ordinarily take to be relevant for questions about how we are.

Funder

Carlsbergfondet

Aarhus Universitet

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. Ammitzbøll Flügge A, Holten Møller N, Hildebrandt T, Palmer Olsen H (2022) Er du grøn—algoritmer til beslutningstøtte i det offentlige. En kvalitativ undersøgelse af sagsbehandleres praksis og brug af ASTA til profilering af nyledige dagpengemodtagere. (Are you green—algorithms for decision support in the public sector. A qualitative study of case handlers' practice and use of ASTA for profiling newly unemployed unemployment benefit recipients). Department of Computer Science, University of Copenhagen. https://static1.squarespace.com/static/5e3ad7fa73600c394b539f6b/t/628e3f91ba738054d6b7d90c/1653489554932/Er+du+gr%C3%B8n+Algoritmer+til+beslutningsst%C3%B8tte+%28Fl%C3%BCgge+et+al.%2C+2022%29.pdf. Accessed 7 Dec 2023

2. Ayodele TO (2010) Types of machine learning algorithms. New Adv Mach Learn 3:19–48

3. Babushkina D, Votsis A (2022) Disruption, technology and the question of (artificial) identity. AI Ethics 2(4):611–622

4. Bjerring JC, Busch J (2021) Artificial intelligence and patient-centered decision-making. Philos Technol 34(2):349–371

5. Bolinger R (2021) Explaining the justificatory asymmetry between statistical and individualized evidence. In: Robson J, Hoskins Z (eds) The social epistemology of legal trials. Routledge, pp 60–76

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mediale Identitäten – multimodal und mehrsprachig;Zeitschrift für Literaturwissenschaft und Linguistik;2024-07-15

2. Towards a smart glasses society? Ethical perspectives on extended realities and augmenting technologies;Frontiers in Virtual Reality;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3