Maximizing team synergy in AI-related interdisciplinary groups: an interdisciplinary-by-design iterative methodology

Author:

Bisconti PiercosmaORCID,Orsitto DavideORCID,Fedorczyk FedericaORCID,Brau FabioORCID,Capasso MariannaORCID,De Marinis LorenzoORCID,Eken HüseyinORCID,Merenda FedericaORCID,Forti MirkoORCID,Pacini MarcoORCID,Schettini Claudia

Abstract

AbstractIn this paper, we propose a methodology to maximize the benefits of interdisciplinary cooperation in AI research groups. Firstly, we build the case for the importance of interdisciplinarity in research groups as the best means to tackle the social implications brought about by AI systems, against the backdrop of the EU Commission proposal for an Artificial Intelligence Act. As we are an interdisciplinary group, we address the multi-faceted implications of the mass-scale diffusion of AI-driven technologies. The result of our exercise lead us to postulate the necessity of a behavioural theory that standardizes the interaction process of interdisciplinary groups. In light of this, we conduct a review of the existing approaches to interdisciplinary research on AI appliances, leading to the development of methodologies like ethics-by-design and value-sensitive design, evaluating their strengths and weaknesses. We then put forth an iterative process theory hinging on a narrative approach consisting of four phases: (i) definition of the hypothesis space, (ii) building-up of a common lexicon, (iii) scenario-building, (iv) interdisciplinary self-assessment. Finally, we identify the most relevant fields of application for such a methodology and discuss possible case studies.

Funder

Scuola Superiore Sant'Anna

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Human-Computer Interaction,Philosophy

Reference41 articles.

1. High-Level Independent Group on Artificial Intelligence (AI HLEG) (2019) Ethics Guidelines for Trustworthy AI. Brussels

2. Angwin J, Jeff L, Surya M, Lauren K (2016) Machine Bias There’s Software Used across the Country to Predict Future Criminals. And It’s Biased against Blacks. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (last accessed 28/05/2022)

3. Beaudouin V, Isabelle B, David B, Stéphan C, Florence d’A-B, James E, Winston M, Pavlo M, Jayneel P (2020) Flexible and context-specific AI explainability: a multidisciplinary approach. Preprint available at SSRN 3559477.

4. Blockeel H (2011) Hypothesis space. Encycloped Mach Learn 1:511–513

5. Christen M, Mark A, Salardi S, Saporit M (2020) A framework for understanding and evaluating moral technologies. In: Salardi S, Saporit M (eds) Le tecnologie 'morali' emergenti e le sfide etico-giuridiche delle nuove soggettività. Giappichelli Editore

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3