AI under great uncertainty: implications and decision strategies for public policy

Author:

Nordström MariaORCID

Abstract

AbstractDecisions where there is not enough information for a well-informed decision due to unidentified consequences, options, or undetermined demarcation of the decision problem are called decisions under great uncertainty. This paper argues that public policy decisions on how and if to implement decision-making processes based on machine learning and AI for public use are such decisions. Decisions on public policy on AI are uncertain due to three features specific to the current landscape of AI, namely (i) the vagueness of the definition of AI, (ii) uncertain outcomes of AI implementations and (iii) pacing problems. Given that many potential applications of AI in the public sector concern functions central to the public sphere, decisions on the implementation of such applications are particularly sensitive. Therefore, it is suggested that public policy-makers and decision-makers in the public sector can adopt strategies from the argumentative approach in decision theory to mitigate the established great uncertainty. In particular, the notions of framing and temporal strategies are considered.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Human-Computer Interaction,Philosophy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3