Older adults with slow sit to stand times show reduced temporal precision of audio–visual integration

Author:

O’Dowd A.ORCID,Hirst R. J.,Setti A.,Kenny R. A.,Newell F. N.

Abstract

AbstractSustained integration of sensory inputs over increased temporal delays is associated with reduced cognitive and physical functioning in older adults and adverse outcomes such as falls. Here, we explored the relationship between multisensory integration and a clinically relevant measure of balance/postural control; Sit-to-Stand Time, the efficiency with which an older adult can transition between a seated and a standing posture. We investigated whether temporal multisensory integration was associated with performance on the Five-Times Sit-to-Stand Test (FTSST) in a large sample of 2556 older adults (mean age = 63.62 years, SD = 7.50; 55% female) drawn from The Irish Longitudinal Study on Ageing (TILDA). K-means clustering was applied to FTSST data, yielding three clusters characterised by fast (mean = 10.88 s; n = 1122), medium (mean = 14.34 s; n = 1133) and slow (mean = 18.97 s; n = 301) sit-to-stand times. At wave 3 of TILDA, older adults participated in the Sound Induced Flash Illusion (SIFI), a measure of the precision of temporal audio–visual integration, which included three audio–visual stimulus onset asynchronies (SOAs): 70, 150 and 230 ms. Older adults with the slowest sit-to-stand times were more susceptible to the SIFI at the longest SOA (230 ms) compared to the shortest SOA (70 ms) relative to those with the fastest times (p = 0.02). Older adults who take longer to repeatedly transition from a seated to a standing posture exhibit an expanded temporal binding window for audio–visual events, supporting a link between multisensory perception and balance/postural control in ageing.

Funder

Health Research Board

University of Dublin, Trinity College

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3