Does exposure to startle impact voluntary reaching movements in individuals with severe-to-moderate stroke?

Author:

Rahimi MarziyeORCID,Swann Zoe,Honeycutt Claire F.

Abstract

AbstractWhen movements of individuals with stroke (iwS) are elicited by startling acoustic stimulus (SAS), reaching movements are faster, further, and directed away from the body. However, these startle-evoked movements also elicit task-inappropriate flexor activity, raising concerns that chronic exposure to startle might also induce heightened flexor activity during voluntarily elicited movement. The objective of this study is to evaluate the impact of startle exposure on voluntary movements during point-to-point reaching in individuals with moderate and severe stroke. We hypothesize that startle exposure will increase task-inappropriate activity in flexor muscles, which will be associated with worse voluntarily initiated reaching performance (e.g. decreased distance, displacement, and final accuracy). Eleven individuals with moderate-to-severe stroke (UEFM = 8–41/66 and MAS = 0–4/4) performed voluntary point-to-point reaching with 1/3 of trials elicited by an SAS. We used electromyography to measure activity in brachioradialis (BR), biceps (BIC), triceps lateral head (TRI), pectoralis (PEC), anterior deltoid (AD), and posterior deltoid (PD). Conversely to our hypothesis, exposure to startle did not increase abnormal flexion but rather antagonist activity in the elbow flexors and shoulder horizontal adductors decreased, suggesting that abnormal flexor/extensor co-contraction was reduced. This reduction of flexion led to increased reaching distance (18.2% farther), movement onset (8.6% faster), and final accuracy (16.1% more accurate) by the end of the session. This study offers the first evidence that exposure to startle in iwS does not negatively impact voluntary movement; moreover, exposure may improve volitionally activated reaching movements by decreasing abnormal flexion activity.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3