Multisensory processing and proprioceptive plasticity during resizing illusions

Author:

Hansford Kirralise J.ORCID,Baker Daniel H.ORCID,McKenzie Kirsten J.ORCID,Preston Catherine E. J.ORCID

Abstract

AbstractBodily resizing illusions typically use visual and/or tactile inputs to produce a vivid experience of one’s body changing size. Naturalistic auditory input (an input that reflects the natural sounds of a stimulus) has been used to increase illusory experience during the rubber hand illusion, whilst non-naturalistic auditory input can influence estimations of finger length. We aimed to use a non-naturalistic auditory input during a hand-based resizing illusion using augmented reality, to assess whether the addition of an auditory input would increase both subjective illusion strength and measures of performance-based tasks. Forty-four participants completed the following three conditions: no finger stretching, finger stretching without tactile feedback and finger stretching with tactile feedback. Half of the participants had an auditory input throughout all the conditions, whilst the other half did not. After each condition, the participants were given one of the following three performance tasks: stimulated (right) hand dot touch task, non-stimulated (left) hand dot touch task, and a ruler judgement task. Dot tasks involved participants reaching for the location of a virtual dot, whereas the ruler task concerned estimates of the participant’s own finger on a ruler whilst the hand was hidden from view. After all trials, the participants completed a questionnaire capturing subjective illusion strength. The addition of auditory input increased subjective illusion strength for manipulations without tactile feedback but not those with tactile feedback. No facilitatory effects of audio were found for any performance task. We conclude that adding auditory input to illusory finger stretching increased subjective illusory experience in the absence of tactile feedback but did not affect performance-based measures.

Funder

Pain Relief Foundation

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3