Gender wage inequality: new evidence from penalized expectile regression

Author:

Bonaccolto-Töpfer MarinaORCID,Bonaccolto Giovanni

Abstract

AbstractThe Machado-Mata decomposition building on quantile regression has been extensively analyzed in the literature focusing on gender wage inequality. In this study, we generalize the Machado-Mata decomposition to the expectile regression framework, which, to the best of our knowledge, has never been applied in this strand of the literature. In contrast, in recent years, expectiles have gained increasing attention in other contexts as an alternative to traditional quantiles, providing useful statistical and computational properties. We flexibly deal with high-dimensional problems by employing the Least Absolute Shrinkage and Selection Operator. The empirical analysis focuses on the gender pay gap in Germany and Italy. We find that depending on the estimation approach (i.e. expectile or quantile regression) the results substantially differ along some regions of the wage distribution, whereas they are similar for others. From a policy perspective, this finding is important as it affects conclusions about glass ceiling and sticky floors.

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Organizational Behavior and Human Resource Management,General Economics, Econometrics and Finance,Sociology and Political Science

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3