Heavy vector-like quarks decaying to exotic scalars: a case study with triplets

Author:

Banerjee AvikORCID,Ellajosyula VenugopalORCID,Panizzi LucaORCID

Abstract

Abstract We investigate the pair production of a vector-like quark triplet with hypercharge 5/3 decaying into top quark and a complex scalar triplet with hypercharge 1 at the LHC. This novel scenario, featuring particles with exotic charges — two quarks with charge 8/3 and 5/3 and a scalar with charge 2 — serves as a unique window to models based on the framework of partial compositeness, where these particles naturally emerge as bound states around the TeV scale. Leveraging on the LHC data we establish exclusion limits on the masses of the vector-like quark and the scalar triplet. Subsequently, we design an analysis strategy aimed at improving sensitivity in the region which is still allowed. Our analysis focuses on two specific regions in the parameter space: the first entails a large mass gap between the vector-like quarks and the scalars, so that the vector-like quarks can decay into the scalars; the second involves a small mass gap, such that this decay is forbidden. To simplify the parameter space, both vector-like quarks and scalars are assumed to be degenerate or almost degenerate within the triplets, such that chain decays between fermions and scalars are suppressed. As a result, we found that final states characterized by a same-sign lepton pair, multiple jets, and high net transverse momentum (i.e. effective mass) will play a pivotal role to unveil this model and, more in general, models characterised by multiple vector-like quarks around the same mass scale during the high luminosity LHC phase.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3