Abstract
Abstract
We consider anisotropic black holes in the context of holographic renormalization group (RG) flows. We construct an a-function that is stationary at the boundary and the horizon and prove that it is also monotonic in both the exterior and the interior of the black hole. In spite of the reduced symmetry, we find that the “radial” null energy condition is sufficient to ensure the existence of this monotonic a-function. After constructing the a-function, we explore a holographic anisotropic p-wave superfluid state as a concrete example and numerical testing grounds. In doing so, we find that the a-function exhibits nontrivial oscillations in the trans-IR regime while preserving monotonicity. We find evidence that such oscillations appear to drive the trans-IR flow into nontrivial fixed points. We conclude by briefly discussing how our work fits into both the broader program of holographic RG flow and quantum information approaches to probing the black hole interior.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献