Conformal conserved currents in embedding space

Author:

Fortin Jean-François,Ma Wen-Jie,Prilepina Valentina,Skiba Witold

Abstract

Abstract We study conformal conserved currents in arbitrary irreducible representations of the Lorentz group using the embedding space formalism. With the help of the operator product expansion, we first show that conservation conditions can be fully investigated by considering only two- and three-point correlation functions. We then find an explicitly conformally-covariant differential operator in embedding space that implements conservation based on the standard position space operator product expansion differential operator μ, although the latter does not uplift to embedding space covariantly. The differential operator in embedding space that imposes conservation is the same differential operator $$ \mathcal{D} $$ D ijA used in the operator product expansion in embedding space. We provide several examples including conserved currents in irreducible representations that are not symmetric and traceless. With an eye on four-point conformal bootstrap equations for four conserved vector currents 〈JJJJ〉 and four energy-momentum tensors 〈TTTT〉, we mostly focus on conservation conditions for $$ \left\langle JJ\mathcal{O}\right\rangle $$ JJ O and $$ \left\langle TT\mathcal{O}\right\rangle $$ TT O . Finally, we reproduce and extend the consequences of conformal Ward identities at coincident points by determining three-point coefficients in terms of charges.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3