Exotic spin-dependent interactions through unparticle exchange

Author:

Wu L. Y.ORCID,Zhang K. Y.ORCID,Yan H.ORCID

Abstract

Abstract The potential discovery of unparticles could have far-reaching implications for particle physics and cosmology. For over a decade, high-energy physicists have extensively studied the effects of unparticles. In this study, we derive six types of nonrelativistic potentials between fermions induced by unparticle exchange in coordinate space. We consider all possible combinations of scalar, pseudo-scalar, vector, and axial-vector couplings to explore the full range of possibilities. Previous studies have only examined scalar-scalar (SS), pseudoscalar-pseudoscalar (PP), vector-vector (VV), and axial-axial-vector (AA) type interactions, which are all parity even. We propose SP and VA interactions to extend our understanding of unparticle physics, noting that parity conservation is not always guaranteed in modern physics. We explore the possibilities of detecting unparticles through the long-range interactions they may mediate with ordinary matter. Dedicated experiments using precision measurement methods can be employed to search for such interactions. We discuss the properties of these potentials and estimate constraints on their coupling constants based on existing experimental data. Our findings indicate that for some particular values of the scaling dimension $$ {d}_{\mathcal{U}} $$ d U , the coupling between scalar or vector unparticles and fermions is constrained by several orders of magnitude more tightly than the previous limits. The underlying reason for this improvement is analyzed. Limits are also set on the newly proposed SP and VA interactions for continuous $$ {d}_{\mathcal{U}} $$ d U values, allowing the exploration of the $$ {d}_{\mathcal{U}} $$ d U dependence of the constraints. It turns out that the bounds exhibit an exponential decay trend with the increasing $$ {d}_{\mathcal{U}} $$ d U .

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3