Universal accelerating cosmologies from 10d supergravity

Author:

Marconnet PaulORCID,Tsimpis Dimitrios

Abstract

Abstract We study 4d Friedmann-Lemaître-Robertson-Walker cosmologies obtained from time-dependent compactifications of Type IIA 10d supergravity on various classes of 6d manifolds (Calabi-Yau, Einstein, Einstein-Kähler). The cosmologies we present are universal in that they do not depend on the detailed features of the compactification manifold, but only on the properties which are common to all the manifolds belonging to that class. Once the equations of motion are rewritten as an appropriate dynamical system, the existence of solutions featuring a phase of accelerated expansion is made manifest. The fixed points of this dynamical system, as well as the trajectories on the boundary of the phase space, correspond to analytic solutions which we determine explicitly. Furthermore, some of the resulting cosmologies exhibit eternal or semi-eternal acceleration, whereas others allow for a parametric control on the number of e-foldings. At future infinity, one can achieve both large volume and weak string coupling. Moreover, we find several smooth accelerating cosmologies without Big Bang singularities: the universe is contracting in the cosmological past (T < 0), expanding in the future (T > 0), while in the vicinity of T = 0 it becomes de Sitter in hyperbolic slicing. We also obtain several cosmologies featuring an infinite number of cycles of alternating periods of accelerated and decelerated expansions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beginners lectures on flux compactifications and related Swampland topics;Physics Reports;2024-01

2. No accelerating scaling cosmologies at string tree level?;Journal of Cosmology and Astroparticle Physics;2024-01-01

3. Accelerated expansion of an open universe and string theory realizations;Physical Review D;2023-12-11

4. No asymptotic acceleration without higher-dimensional de Sitter vacua;Journal of High Energy Physics;2023-11-24

5. Cosmic acceleration and turns in the Swampland;Journal of Cosmology and Astroparticle Physics;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3