Disforming the Kerr metric

Author:

Anson TimothyORCID,Babichev Eugeny,Charmousis Christos,Hassaine Mokhtar

Abstract

Abstract Starting from a recently constructed stealth Kerr solution of higher order scalar tensor theory involving scalar hair, we analytically construct disformal versions of the Kerr spacetime with a constant degree of disformality and a regular scalar field. While the disformed metric has only a ring singularity and asymptotically is quite similar to Kerr, it is found to be neither Ricci flat nor circular. Non-circularity has far reaching consequences on the structure of the solution. As we approach the rotating compact object from asymptotic infinity we find a static limit ergosurface similar to the Kerr spacetime with an enclosed ergoregion. However, the stationary limit of infalling observers is found to be a timelike hypersurface. A candidate event horizon is found in the interior of this stationary limit surface. It is a null hypersurface generated by a null congruence of light rays which are no longer Killing vectors. Under a mild regularity assumption, we find that the candidate surface is indeed an event horizon and the disformed Kerr metric is therefore a black hole quite distinct from the Kerr solution.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference70 articles.

1. LIGO Scientific, Virgo collaboration, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9 (2019) 031040 [arXiv:1811.12907] [INSPIRE].

2. LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

3. T. Johannsen et al., Testing general relativity with accretion-flow imaging of Sgr A*, Phys. Rev. Lett. 117 (2016) 091101 [arXiv:1608.03593] [INSPIRE].

4. S. Doeleman et al., Imaging an event horizon: submm-VLBI of a super massive black hole, arXiv:0906.3899 [INSPIRE].

5. GRAVITY collaboration, Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole, Astron. Astrophys. 615 (2018) L15 [arXiv:1807.09409] [INSPIRE].

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3