Abstract
Abstract
Quadratic scale-invariant gravity non minimally coupled to a scalar field provides a competitive model for inflation, characterized by the transition from an unstable to a stable fixed point, both characterized by constant scalar field configurations. We provide a complementary analysis of the same model in the static, spherically symmetric setting, obtaining two Schwarzschild-de Sitter solutions, which corresponds to the two fixed points existing in the cosmological scenario. The stability of such solutions is thoroughly investigated from two different perspectives. First, we study the system at the classical level by the analysis of linear perturbations. In particular, we provide both analytical and numerical results for the late-time behavior of the perturbations, proving the stable and unstable character of the two solutions. Then we perform a semi-classical, non-linear analysis based on the Euclidean path integral formulation. By studying the difference between the Euclidean on-shell actions evaluated on both solutions, we prove that the unstable one has a meta-stable character and is spontaneously decaying into the stable fixed point which is always favoured.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献