Massive gravitino scattering amplitudes and the unitarity cutoff of the new Fayet-Iliopoulos terms

Author:

Antoniadis IgnatiosORCID,Guillen Anthony,Rondeau FrançoisORCID

Abstract

Abstract We compute the 2 → 2 gravitino scattering amplitudes at tree level in supergravity theories where supersymmetry is spontaneously broken. In the unitary gauge, the gravitino becomes massive (of mass m3/2) by absorbing the Goldstino, and the scattering amplitudes of its longitudinal polarisations grow with energy as $$ {\kappa}^2{E}^4/{m}_{3/2}^2 $$ κ 2 E 4 / m 3 / 2 2 , signaling a potential breakdown of unitarity at a scale $$ {\Lambda}^2\sim {m}_{3/2}/\kappa \sim {M}_{\textrm{SUSY}}^2 $$ Λ 2 m 3 / 2 / κ M SUSY 2 . As we show explicitly in the Polonyi model, this leading term is cancelled by the contributions coming from the scalar partner of the Goldstino (sgoldstino), restoring perturbative unitarity up to the Planck scale. This is expected since supersymmetry is spontaneously broken, in analogy with the situation occuring in the Standard Model, where massive gauge bosons scattering preserves unitarity at high energy once we consider the contributions from the Higgs boson. However, when supersymmetry is broken by the new Fayet-Iliopoulos D-term, with ungauged R-symmetry, the above cancellation does not occur. In this case, the unbroken phase is singular and there is no contribution able to cancel the quartic divergences of the amplitudes, leading to a cutoff Λ ~ MSUSY where the effective theory breaks down. The same behaviour is obtained when supersymmetry is non-linearly realised.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3