Abstract
Abstract
In previous work, black hole vortex solutions in Einstein gravity with AdS3 background were found where the scalar matter profile had a singularity at the origin r = 0. In this paper, we find numerically static vortex solutions where the scalar and gauge fields have a non-singular profile under Einstein gravity in an AdS3 background. Vortices with different winding numbers n, VEV v and cosmological constant Λ are obtained. These vortices have positive mass and are not BTZ black holes as they have no event horizon. The mass is determined in two ways: by subtracting the numerical values of two separate asymptotic metrics and via an integral that is purely over the matter fields. The mass of the vortex increases as the cosmological constant becomes more negative and this coincides with the core of the vortex becoming smaller (compressed). We then consider the vortex with gravity in asymptotically flat spacetime for different values of the coupling α = 1/(16πG). At the origin, the spacetime has its highest curvature and there is no singularity. It transitions to an asymptotic conical spacetime with angular deficit that increases significantly as α decreases. For comparison, we also consider the vortex without gravity in flat spacetime. For this case, one cannot obtain the mass by the first method (subtracting two metrics) but remarkably, via a limiting procedure, one can obtain an integral mass formula. In the absence of gauge fields, there is a well-known logarithmic divergence in the energy of the vortex. With gravity, we present this divergence in a new light. We show that the metric acquires a logarithmic term which is the 2 + 1 dimensional realization of the Newtonian gravitational potential when General Relativity is supplemented with a scalar field. This opens up novel possibilities which we discuss in the conclusion.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference14 articles.
1. S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].
2. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
3. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
4. M. Cadoni, P. Pani and M. Serra, Scalar hairs and exact vortex solutions in 3D AdS gravity, JHEP 01 (2010) 091 [arXiv:0911.3573] [INSPIRE].
5. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献