Author:
Hanada Masanori,Romatschke Paul
Abstract
Abstract
We perform microcanonical classical statistical lattice simulations of SU(N) Yang-Mills theory with eight scalars on a circle. Measuring the eigenvalue distribution of the spatial Wilson loop we find two distinct phases depending on the total energy and circle radius, which we tentatively interpret as corresponding to black hole and black string phases in a dual gravity picture. We proceed to study quenches by first preparing the system in one phase, rapidly changing the total energy, and monitoring the real-time system response. We observe that the system relaxes to the equilibrium phase corresponding to the new energy, in the process exhibiting characteristic damped oscillations. We interpret this as the topology change from black hole to black string configurations, with damped oscillations corresponding to quasi-normal mode ringing of the black hole/black string final state. This would suggest that α
′
corrections alone can resolve the singularity associated with the topology change. We extract the real and imaginary part of the lowest-lying presumptive quasinormal mode as a function of energy and N.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献