Abstract
Abstract
We study scattering on the black hole horizon in a partial wave basis, with an impact parameter of the order of the Schwarzschild radius or less. This resembles the strong gravity regime where quantum gravitational effects appear. The scattering is governed by an infinite number of virtual gravitons exchanged on the horizon. Remarkably, they can all be summed non-perturbatively in ħ and γ ∼ MPl/MBH. These results generalise those obtained from studying gravitational backreaction. Unlike in the eikonal calculations in flat space, the relevant centre of mass energy of the collisions is not necessarily Planckian; instead it is easily satisfied, s » γ2$$ {M}_{\mathrm{Pl}}^2 $$
M
Pl
2
, for semi-classical black holes. The calculation lends further support to the scattering matrix approach to quantum black holes, and is a second-quantised generalisation of the same.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献