Abstract
AbstractWe study a precise and computationally tractable notion of operator complexity in holographic quantum theories, including the ensemble dual of Jackiw-Teitelboim gravity and two-dimensional holographic conformal field theories. This is a refined, “microcanonical” version of K-complexity that applies to theories with infinite or continuous spectra (including quantum field theories), and in the holographic theories we study exhibits exponential growth for a scrambling time, followed by linear growth until saturation at a time exponential in the entropy — a behavior that is characteristic of chaos. We show that the linear growth regime implies a universal random matrix description of the operator dynamics after scrambling. Our main tool for establishing this connection is a “complexity renormalization group” framework we develop that allows us to study the effective operator dynamics for different timescales by “integrating out” large K-complexities. In the dual gravity setting, we comment on the empirical match between our version of K-complexity and the maximal volume proposal, and speculate on a connection between the universal random matrix theory dynamics of operator growth after scrambling and the spatial translation symmetry of smooth black hole interiors.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献