Abstract
Abstract
In this work we revisit the problem of solving multi-matrix systems through numerical large N methods. The framework is a collective, loop space representation which provides a constrained optimization problem, addressed through master-field minimization. This scheme applies both to multi-matrix integrals (c = 0 systems) and multi-matrix quantum mechanics (c = 1 systems). The complete fluctuation spectrum is also computable in the above scheme, and is of immediate physical relevance in the later case. The complexity (and the growth of degrees of freedom) at large N have stymied earlier attempts and in the present work we present significant improvements in this regard. The (constrained) minimization and spectrum calculations are easily achieved with close to 104 variables, giving solution to Migdal-Makeenko, and collective field equations. Considering the large number of dynamical (loop) variables and the extreme nonlinearity of the problem, high precision is obtained when confronted with solvable cases. Through numerical results presented, we prove that our scheme solves, by numerical loop space methods, the general two matrix model problem.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference62 articles.
1. J. Hoppe, Quantum theory of a relativistic surface, in Workshop on Constraint’s Theory and Relativistic Dynamics, Florence Italy (1986), pg. 267.
2. V.A. Kazakov, Solvable matrix models, hep-th/0003064 [INSPIRE].
3. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
4. P. Haggi-Mani and B. Sundborg, Free large N supersymmetric Yang-Mills theory as a string theory, JHEP 04 (2000) 031 [hep-th/0002189] [INSPIRE].
5. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn — deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献