Non-Hermitian Hamiltonian deformations in quantum mechanics

Author:

Matsoukas-Roubeas Apollonas S.,Roccati FedericoORCID,Cornelius Julien,Xu Zhenyu,Chenu Aurélia,del Campo AdolfoORCID

Abstract

Abstract The construction of exactly-solvable models has recently been advanced by considering integrable $$ T\overline{T} $$ T T ¯ deformations and related Hamiltonian deformations in quantum mechanics. We introduce a broader class of non-Hermitian Hamiltonian deformations in a nonrelativistic setting, to account for the description of a large class of open quantum systems, which includes, e.g., arbitrary Markovian evolutions conditioned to the absence of quantum jumps. We relate the time evolution operator and the time-evolving density matrix in the undeformed and deformed theories in terms of integral transforms with a specific kernel. Non-Hermitian Hamiltonian deformations naturally arise in the description of energy diffusion that emerges in quantum systems from time-keeping errors in a real clock used to track time evolution. We show that the latter can be related to an inverse $$ T\overline{T} $$ T T ¯ deformation with a purely imaginary deformation parameter. In this case, the integral transforms take a particularly simple form when the initial state is a coherent Gibbs state or a thermofield double state, as we illustrate by characterizing the purity, Rényi entropies, logarithmic negativity, and the spectral form factor. As the dissipative evolution of a quantum system can be conveniently described in Liouville space, we further study the spectral properties of the Liouvillians, i.e., the dynamical generators associated with the deformed theories. As an application, we discuss the interplay between decoherence and quantum chaos in non-Hermitian deformations of random matrix Hamiltonians and the Sachdev-Ye-Kitaev model.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3