Abstract
Abstract
We identify novel structure in newly computed multi-loop amplitudes and quantum actions for even-point effective field theories, including both the nonlinear sigma model (NLSM) and double-copy gauge theories such as Born-Infeld and its supersymmetric generalizations. We exploit special properties of all even-point theories towards establishing an efficient unitarity based amplitude construction. In doing so, we find evidence that the leading IR divergence of NLSM amplitudes exponentiates when the target space is $$ \mathbbm{CP} $$
CP
1 ≅ SU(2)/U(1). We then systematically compute the two-loop anomalous behavior of Born-Infeld, and find that the counterterms needed to restore U(1) invariant behavior at loop-level can be constructed via a symmetric-structure double-copy. We also demonstrate that the divergent part of the one-minus (−+++) two-loop anomaly vanishes upon introducing an evanescent operator. In addition to these purely photonic counterterms, we verify through explicit calculation that the anomalous matrix elements that violate U(1) duality invariance can be alternatively cancelled by summing over internal $$ \mathcal{N} $$
N
= 4 DBIVA superfields. Finally we find that $$ \mathcal{N} $$
N
= 4 Dirac-Born-Infeld-Volkov-Akulov (DBIVA) amplitudes admit double-copy construction through two-loop order by reproducing our unitarity based result with a double copy between color-dual $$ \mathcal{N} $$
N
= 4 super-Yang-Mills and our two-loop NLSM amplitudes. This result supports the possibility of color-dual representations for NLSM beyond one-loop. We conclude with an overview of how D-dimensional four-photon counterterms can be constructed in generality with the symmetric-structure double-copy, and outline a convenient way of counting evanescent operators using Hilbert series as generating functions.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献