Searching for dark matter signals in timing spectra at neutrino experiments

Author:

Dutta Bhaskar,Kim Doojin,Liao Shu,Park Jong-ChulORCID,Shin Seodong,Strigari Louis E.,Thompson Adrian

Abstract

Abstract The sensitivity to dark matter signals at neutrino experiments is fundamentally challenged by the neutrino rates, as they leave similar signatures in their detectors. As a way to improve the signal sensitivity, we investigate a dark matter search strategy which utilizes the timing and energy spectra to discriminate dark matter from neutrino signals at low-energy, pulsed-beam neutrino experiments. This strategy was proposed in our companion paper Phys. Rev. Lett.124 (2020) 121802 [1], which we apply to potential searches at COHERENT, JSNS2, and CCM. These experiments are not only sources of neutrinos but also high intensity sources of photons. The dark matter candidate of interest comes from the relatively prompt decay of a dark sector gauge boson which may replace a Standard-Model photon, so the delayed neutrino events can be suppressed by keeping prompt events only. Furthermore, prompt neutrino events can be rejected by a cut in recoil energy spectra, as their incoming energy is relatively small and bounded from above while dark matter may deposit a sizable energy beyond it. We apply the search strategy of imposing a combination of energy and timing cuts to the existing CsI and LAr data of the COHERENT experiment as concrete examples, and report a mild excess beyond known backgrounds. We then investigate the expected sensitivity reaches to dark matter signals in our benchmark experiments.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference70 articles.

1. B. Dutta, D. Kim, S. Liao, J.-C. Park, S. Shin and L.E. Strigari, Dark matter signals from timing spectra at neutrino experiments, Phys. Rev. Lett. 124 (2020) 121802 [arXiv:1906.10745] [INSPIRE].

2. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

3. M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, (2017) [arXiv:1707.04591] [INSPIRE].

4. J.-H. Huh, J.E. Kim, J.-C. Park and S.C. Park, Galactic 511 keV line from MeV milli-charged dark matter, Phys. Rev. D 77 (2008) 123503 [arXiv:0711.3528] [INSPIRE].

5. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3