Relic challenges for vector-like fermions as connectors to a dark sector

Author:

Carvunis AlexandreORCID,McGinnis Navin,Morrissey David E.

Abstract

Abstract New dark sectors consisting of exotic fields that couple only very feebly to the Standard Model (SM) have strong theoretical motivation and may be relevant to explaining the abundance of dark matter (DM). An important question for such sectors is how they connect to the SM. For a dark sector with a new gauge interaction, a natural connection arises from heavy vector-like fermions charged under both the visible and dark gauge groups. The gauge charges of such fermions imply that one or more of them is stable in the absence of additional sources of dark symmetry breaking. A generic challenge for such connectors is that they can produce too much dark matter or interact too strongly with nuclei if they were ever thermalized in the early universe. In this paper we study this challenge in a simple connector theory consisting of new vector-like electroweak doublet and singlet fermions that also transform under the fundamental representation of a new Abelian gauge force, and we show that these connectors in their minimal form are almost always ruled out by existing direct DM searches. To address this challenge, we investigate two solutions. First, we study mitigating scattering on nuclei by introducing a Majorana mass term for the singlet. And second, we investigate a mixing with SM leptons that allows the connectors to decay while remaining consistent with cosmological tests and searches for charged lepton flavour violation. Both solutions rely on the presence of a dark Higgs field with a specific charge.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3